L'ENFANT BRULE Prise en charge à la phase aigue

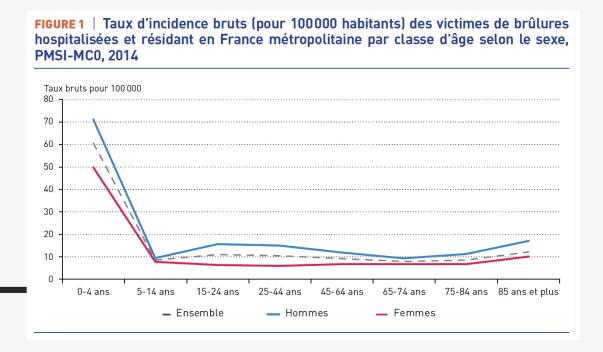
DU BRULOLOGIE

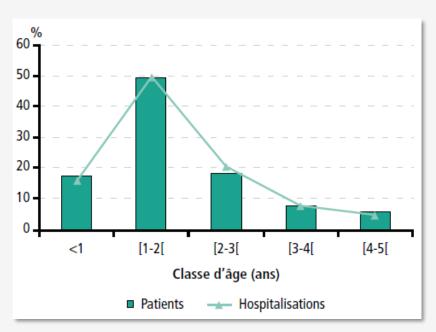
Dr Nicolas Louvet

Réanimation des grands brulés pédiatriques Hôpital Armand Trousseau

26 MARS 2024

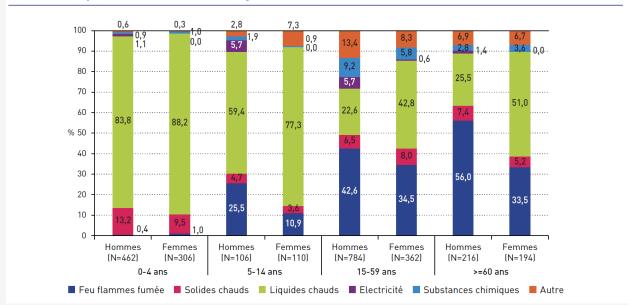
PHYSIOPATHOLOGIE

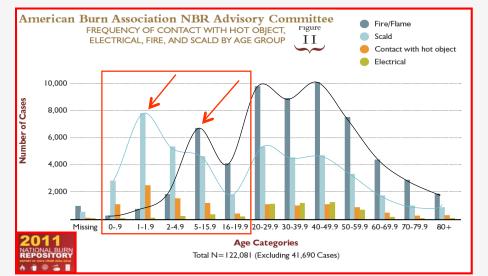

BRULURE:


- Destruction tissulaire
- Exogène
- Le plus souvent cutané
 - Cornéenne
 - Muqueuse (ORL, organes génitaux)
- Mécanismes variés : chaleur, rayonnement, chimique, électrique
- Conséquences locales et systémiques

■ En France, 8 000 patients hospitalisés pour brûlures chaque année

- 28% des hospitalisations pour brûles <5 ans</p>
- Incidence élevée chez les enfants : 60/100 000 enfants vs 14/100 000 adultes
- Pic d'incidence à deux ans





Paget, Santé Publique France, juin 2018

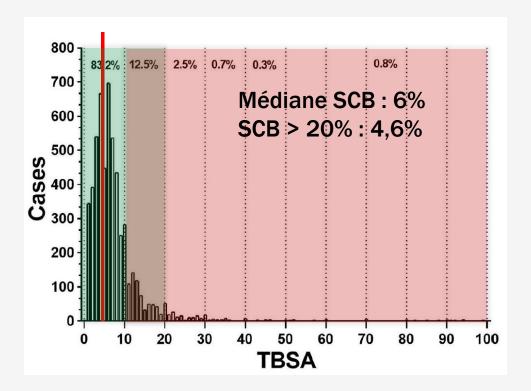

- Les étiologies changent avec l'âge
 - Chez les <5 ans,
 - 80 % dues à des liquides chauds,
 - 10 % contact direct avec solides chauds
 - Chez les 5-15 ans,
 - 60 % Brulures par liquides chauds
 - 15 % Brulures par flammes

FIGURE 3 | Répartition des causes de brûlures accidentelles des victimes hospitalisées en CTB et résidant en France métropolitaine selon le sexe et l'âge, PMSI-MC0, 2014

Brulures peu étendues (SCB < 10%)

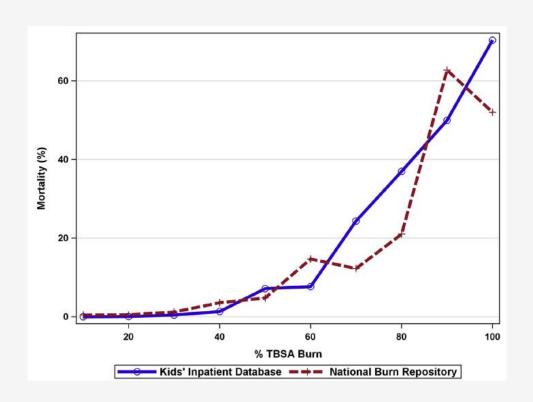
- Central China
- 2013 2019
- 5569 enfants
- Age: $3.7 \pm 3 (1-14)$ ans

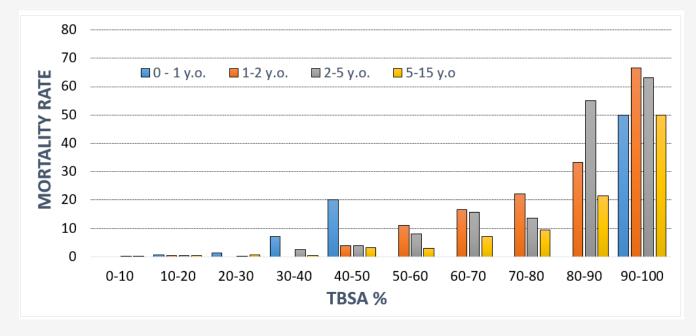
Principalement 2ème degré

Table 4 – Burn etiology and depth of injury.					
	1° n(%)	2° n(%)	3° n(%)		
Flames	47 (28,7)	160 (97,6)	59 (36)		
Scalds	159 (33)	478 (99,2)	26 (5,4)		
Contacts	11 (14,5)	70 (92,3)	12 (15,8)		
Electrics	1 (4)	23 (92)	11 (44)		
Total	220 (29,4)	733 (97,9)	108 (14,4)		

- Switzerland
- 1998 2008
- 749 enfants
- Age: 2,1 (0-15) ans

EPIDEMIOLOGIE


Taux de mortalité faible : < 1% Dans les pays à haut PIB

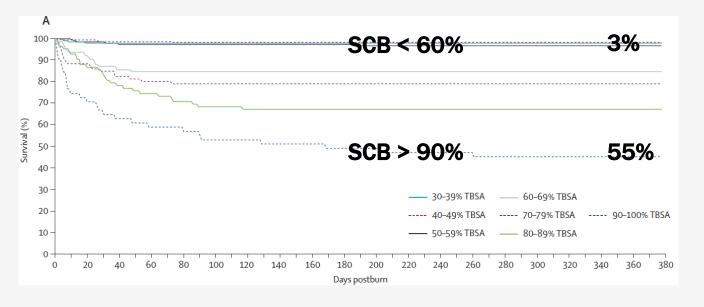

COUNTRY	Year	OVERALL MORTALITY
France (burn centers)	2014	0-4 y.o. : 0,3% 5-14 y.o. : 1 %
Switzerland	1998-2008	0,4 %
China	2013-2019	0,1%
National Burn Repository (USA)	2009-2018	< 1 y.o. : 0,5% 1-2 y.o. : 0,2 % 2- 5 y.o. : 0,7% 5-16 y.o. : 0,7%
Global burn Repository (WHO) 20 countries (middle national income level)	2017	< 1 y.o. : 11 % 1-5 y.o. : 7 % 6-12 y.o. : 9 % 13- 18 y.o. : 23 %

Enfants bonne santé Faible SCB Brulures par eau chaude Principalement 2^{ème} degré

Accès soins intensifs limités : 23 %

- Facteurs de risque de MORTALITE :
 - % SURFACE CUTANEE BRULEE

NBR 2009-2018 (USA)

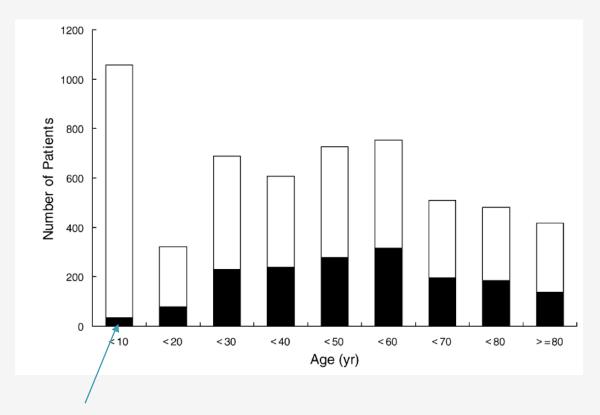

< 20 ans. 2003, 2006, 2009 KIDS: 17300 enfants (USA)

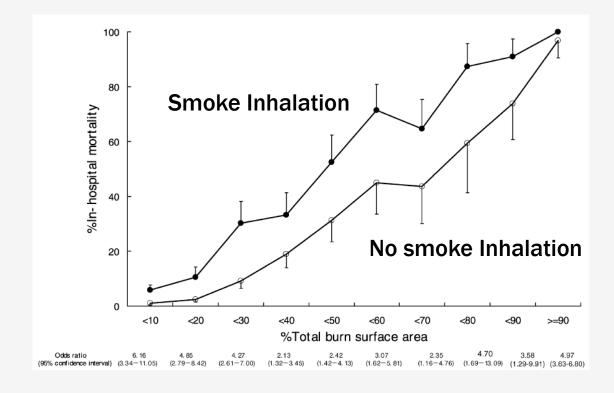
NBR: 13828 enfants (USA)

Facteurs de risque de MORTALITE :

% SURFACE CUTANEE BRULEE

Etude observationnelle 1998 - 2008 952 enfants TBSA > 30 %

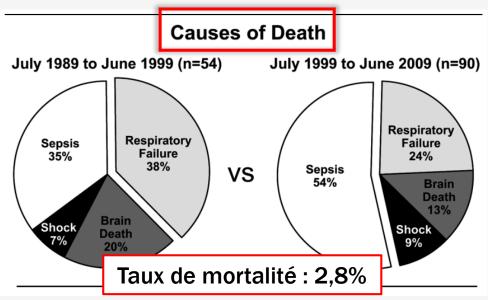


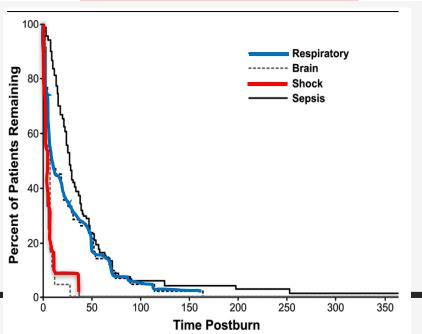

	Point estimate of odds ratio for mortality (95% Wald confidence limits)	pvalue
Burn area ≥60% TBSA	10-07 (5-56-18-22)	<0.0001
Inhalation injury	2.97 (1.81-4.85)	<0.0001
Female sex	2.26 (1.37-3.71)	0.0013
Age at admission (years)	1.022 (0.98-1.07)	0.3489
Burn to admission (days)	0.99 (0.92-1.06)	0.6651
TBSA=total body surface area.		
Table 3: Multiple logistic regr	ession	

SCB > 60 %:

- Surmortalité
- Plus de Sepsis / Infections
- Plus de défaillances d'organes

- Facteurs de risque de MORTALITE :
 - Inhalation de fumée d'incendie :





Smoke Inhalation

10

EPIDEMIOLOGIE

RESPIRATORY FAILURE: BRAIN DEATH:

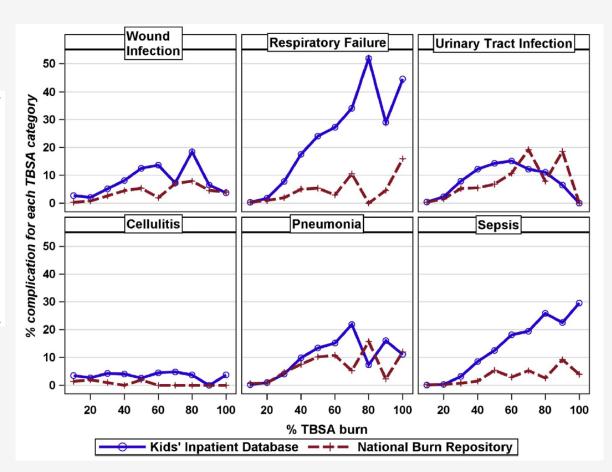
84 % ARDS 48% anoxic brain injury

64 % Inhalation injury 52% brain oedema

SHOCK:

58 % hypovolemic shock

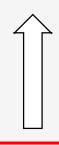
42 %: multiple organ failure without infection

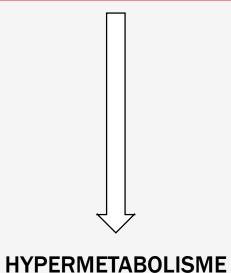

	July 1989 to June 1999	July 1999 to June 2009	P value
Deaths due to fungal sepsis (%)	26	6*	<0.05
Deaths due to sepsis from drug sensitive organisms (%)	32	8*	<0.05
Deaths due to sepsis from resistant organisms (%)	42	86*	<0.05
Multi-Dru	ug Resistant Organisms		
Klebsiella Pneumonia (%)	25	2	NS
Pseudomonas Aeruginosa (%)	25	64	NS
Acinetobacter baumannii (%)	0	27	NS
MRSA (%)	12.5	5	NS
Enterococcus faecalis (%)	25	2	NS
Enterobacter cloacae (%)	12.5	0	NS

Schrinners hospitals (USA) 1989- 2009 : 5200 children

MORBIDITE ASSOCIEE

Top Ten Complications	Count	Percent of All Complications	Percent of Patients with Complication
Urinary Tract Infection	106	14.3	0.7
Pneumonia	64	8.6	0.5
Wound Infection	60	8.1	0.4
Bacteremia	50	6.8	0.4
Cellulitis	48	6.5	0.3
Respiratory Failure	47	6.4	0.3
Extubation Unintentional	30	4.1	0.2
Cardiac Arrest	29	3.9	0.2
Septicemia	29	3.9	0.2
Thrombosis	26	3.5	0.2
Total Complications	740		

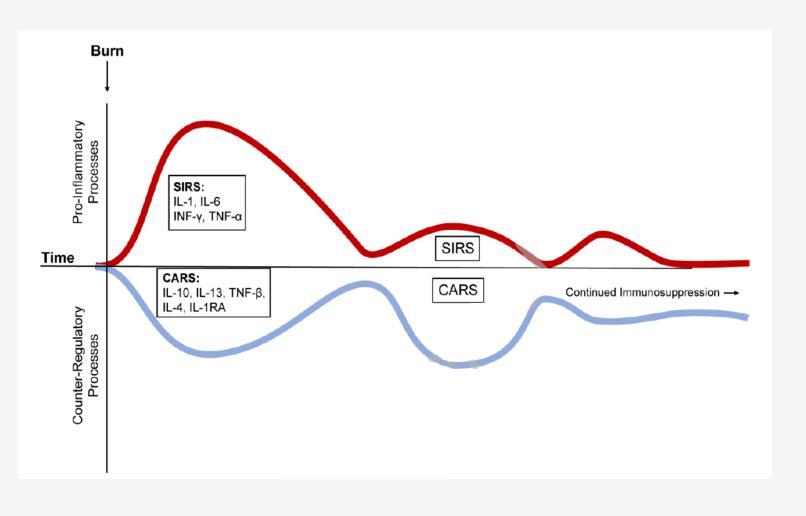

NBR 2009-2018 Enfants 2-5 y.o.

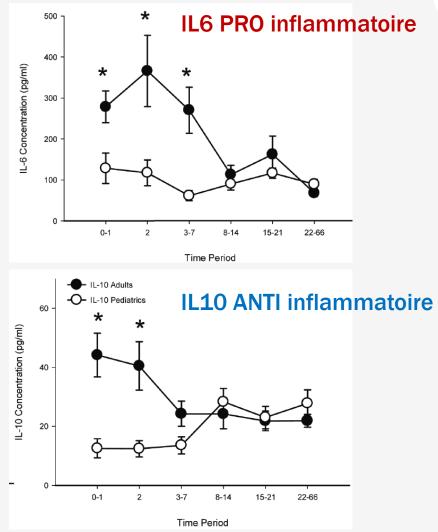

CONSEQUENCES SYSTEMIQUES DES BRULURES

Porter, Lancet 2016

INFLAMMATION SYSTEMIQUE

BRULURE ETENDUE


11111	SIRS	Fièvre, tachycardie, tachypnée	SCB > 10 %	> 48 - 72 H
	Cardiovacaulairo	Fuite capillaire, oedeme interstitiel	SCB > 10%	1-2 H
	Cardiovasculaire	Dépression myocardique, hypotension	SCB > 40%	1-2 H
	Respiratoire	Oedeme pulmonaire, SDRA	SCB > 30-40% Inhalation	> 48 - 72 H
	Gastro intestinale	Oedeme entéral, translocation bactérienne		
	Rénale	Insuffisance rénale aigue		
	Immunité	Effet barrière cutanée déprimé, IMMUNOSUPPRESSION	SCB > 20 %	



Augmentation dépenses énergétiques	SCB > 10 %	
Etat catabolique	SCB > 20 %	
Sarcopénie	SCB > 20 %	F
Diminution densité osseuse	SCB > 20 %	
Résistance à l'insuline	SCB > 20 %	

PENDANT PLUSIEURS MOIS 12

CONSEQUENCES SYSTEMIQUES DES BRULURES

Blears, cpsurg 2020

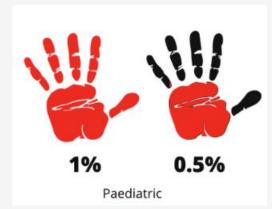
Vous êtes de garde aux urgences pédiatrique...

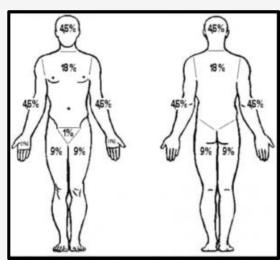
Vous êtes de garde aux urgences pédiatrique...

- **1** EVALUATION DE LA GRAVITE
- ORIENTATION DU PATIENT
- 3 PRISE en CHARGE INITIALE

Vous êtes de garde aux urgences pédiatrique...

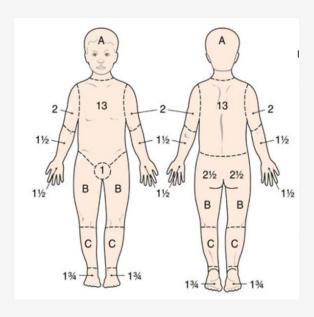
QUELLE EVALUATION?


- 1 SURFACE
- PROFONDEUR
- 3 LOCALISATION
- 4 MECANISME
- 5 AGE / COMORBIDITE


Estimation de la surface par rapport à la Surface Corporelle Totale

NE PAS COMPTER LES BRULURES DU PREMIER DEGRE

Mains (≠ paume) pour les petites brulures :
 = 1% Surface cutanée


• Règle des neufs : utilisable chez l'adulte et l'enfant de plus de 14 ans.

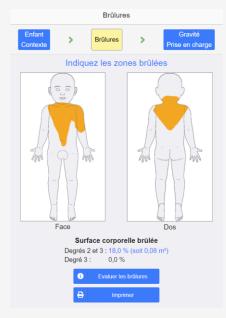
Estimation de la surface par rapport à la Surface Corporelle Totale

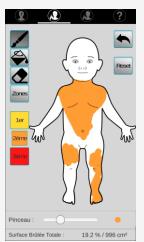
• Méthode de LUND et BROWDER

BRULURE GRAVE CHEZ L'ENFANT : SCB 2º 3º > 10 % SCT

âge	0-1 an	1-4 ans	5-9 ans	10 14 ans
tête (A)	9,5 %	8,5 %	6,5 %	5,5 %
cou	1 %	1 %	1 %	1 %
tronc	13 %	13 %	13 %	13 %
bras	2 %	2 %	2 %	2 %
Avant-bras	1,5 %	1,5 %	1,5 %	1,5 %
main	1,25 %	1,25 %	1,25 %	1,25 %
organes génitaux	1 %	1 %	1 %	1 %
fesse	2,5 %	2,5 %	2,5 %	2,5 %
cuisse (B)	2,75 %	3,25 %	4 %	4,25 %
jambe (C)	2,5 %	2,5 %	2,75 %	3 %
pied	1,75 %	1,75 %	1,75 %	1,75 %

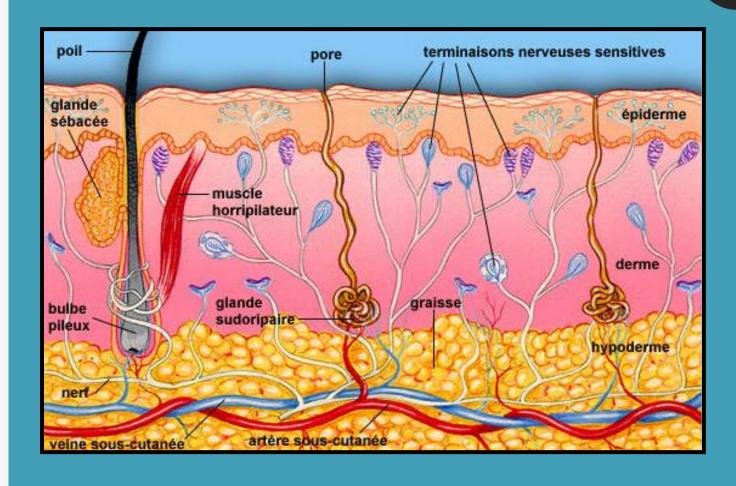
ESTIMATION DE LA SURFACE BRULEE

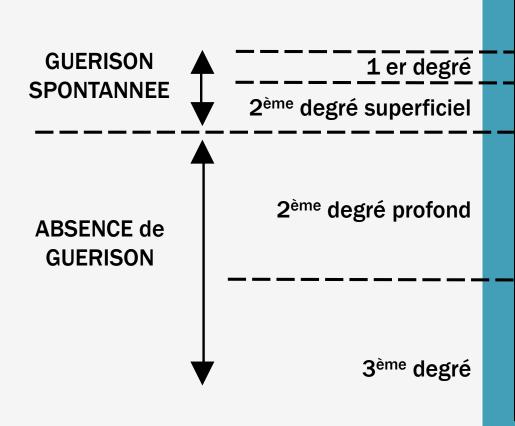

Estimation de la surface par rapport à la Surface Corporelle Totale

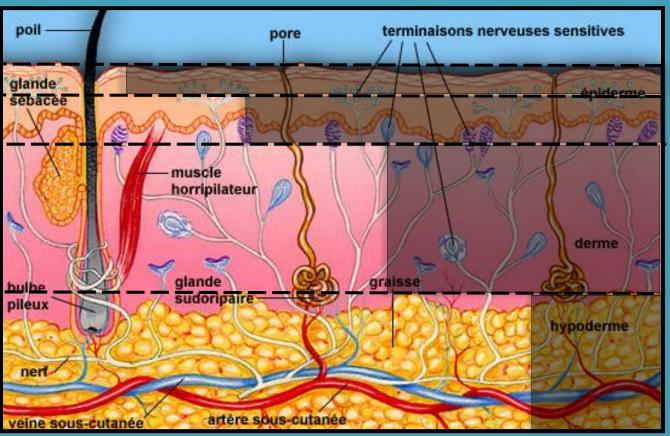

TROUSSEAU DE POCHE



E-BURN







ESTIMATION DE LA PROFONDEUR

ESTIMATION DE LA PROFONDEUR

			and the same of
	SENSATION	TRC	2
1er degré	Douloureux	Normal	
2ème degré superficiel			
2ème degré profond			
3ème degré			

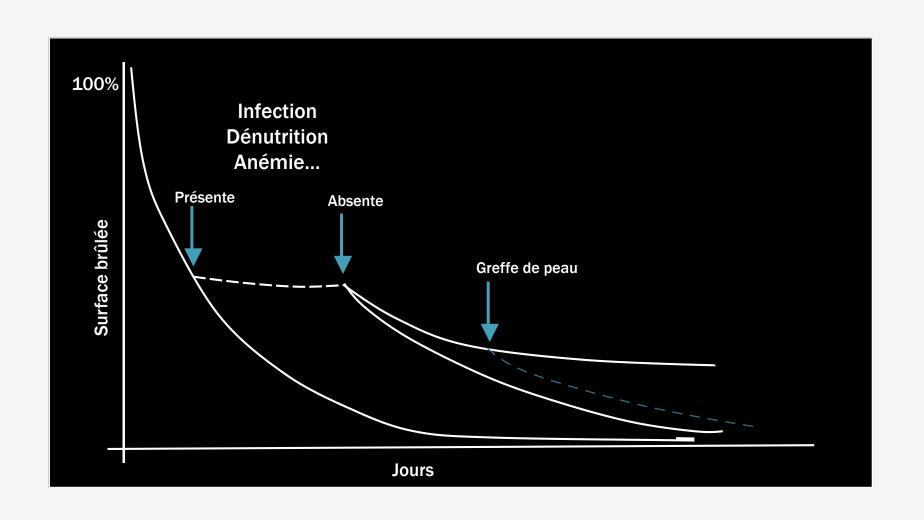
ESTIMATION DE LA PROFONDEUR

	SENSATION	TRC	2
1er degré	Douloureux	Normal	
2ème degré superficiel	Douloureux	Variable	
2ème degré profond			
3ème degré			

24

	SENSATION	TRC	
1er degré	Douloureux	Normal	
2ème degré superficiel	Douloureux	Variable	
2ème degré profond	Diminuée	Absent	
3ème degré	Absente	Absent	

MESSAGES SUR LA PROFONDEUR


Phlyctène = 2^{ème} degré

- Distinction 2^{ème} degré superficiel / 2^{ème} degré profond : DIFFICILE
 - 2^{ème} superficiel : cicatrisation spontanée
 - 2ème intermédiaire...
 - 2^{ème} profond : pas de cicatrisation spontanée
 - 3ème degré : pas de cicatrisation spontanée

- La profondeur de la brulure ne peut être précisée qu'au bout d'une dizaine de jours
- La profondeur de la brulure peut varier dans le temps en fonction de l'état général de l'enfant
- La brulure est un processus dynamique dans le temps

MESSAGES SUR LA PROFONDEUR

LOCALISATIONS A RISQUE

Périnée	Circonférentielles	Articulations	Extrémités Mains / Pieds	Visage
		GILE S		
Infectieux Rétention d'urine	Compression Ischémie membre Fonctionnel	Fonctionnel	Compression Ischémie doigt Fonctionnel Douleur ++	Fonctionnel Esthétique Kératite Brulures VAS ++

CIRCONSTANCES A RISQUE

BRULURES PAR FLAMMES

- Brulures profondes (3^{ème} degré++)
- Inhalation de fumées d'incendie (milieu clos)
 - Intoxication aux CO
 - Intoxication aux Cyanures

INGESTION de LIQUIDE CHAUD

- Brulures des VAS
- Œdème laryngé
- Dysphagie

ELECTRISATIONS

- Hauts voltages
- Troubles du rythme cardiaque
- Nécrose myocardique
- Nécroses tissulaires
- Thromboses vasculaires
- Rhabdomyolyses
- Brûlures profondes
- Neuropathies

2019

Instabilité hémodynamique Nécessité de transfusion pré hospitalière Détresse respiratoire Brulé Grave

SCB (2ème/ 3ème dg) > 10%

SCB 3ème degré > 5%

Nourrisson < 1an

Comorbidité sévère

Localisation à risque

Brulure circulaire

Brulure électrique ou chimique

Brulé à faible risque de complication

SCB 5 - 10 % ET > 1an Non grave

SCB <5%

Stabilisation déchoc/Réa proximité

AVIS CTB

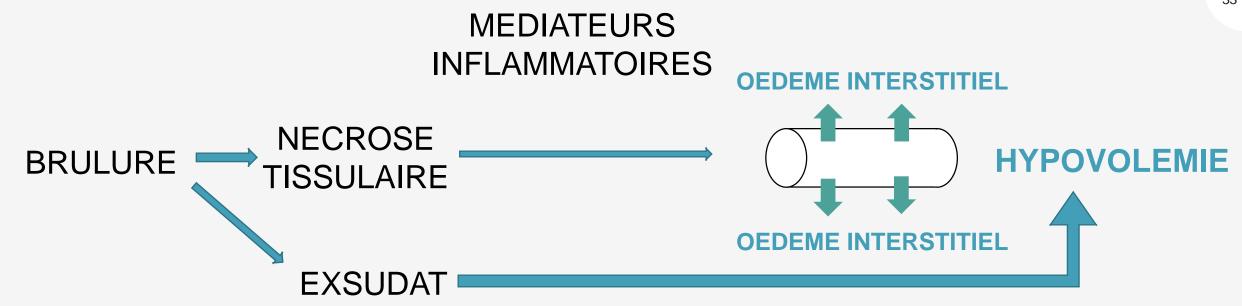
REANIMATION CTB

SERVICE de CHIRURGIE CTB

SERVICE de CHIRURGIE

AMBULATOIRE

CTB


PRISE EN CHARGE INITIALE

- 1 Apports Hydroélectrolytiques
- **2** Gestion des VAS
- 3 Analgésie
- 4 Antisepsie Locale

PRISE EN CHARGE INITIALE

- 1 Apports Hydroélectrolytiques
- Gestion des VAS
- 3 Analgésie
- 4 Antisepsie Locale

APPORTS HYDROELECTROLYTIQUES

Assurer la perfusion des organes vitaux, sans induire de surcharge Assurer la perfusion cutanée

APPORTS HYDROELECTROLYTIQUES

HYPOVOLEMIE

Oligurie, Insuffisance rénale Choc hypovolémique Vasoconstricteurs

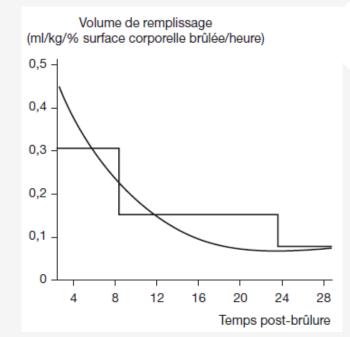
Vasoconstriction Vx cutanés

OEDEMES INTERSTITIELS

Œdèmes pulmonaires, Epanchement pleuraux, Syndrome compartiment abdominal Syndrome des loges

Œdèmes périphériques

Diminution de perfusion cutanée


Approfondissement des brûlures Majoration de l'Inflammation

LE BON VOLUME AU BON MOMENT

QUI PERFUSER ?

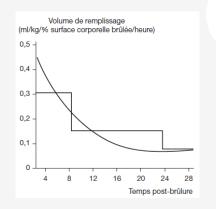
- SCB < 5%: pas de nécessité de perfusion
- SCB 5 -10 %: Pas de perfusion mais vérification des apports per os Perfusion IV avec apports de base si:
 - Apport per os insuffisant
 - SCB 7- 10% : le premier jour

- SCB > 10 %:
 - Perfusion précoce IV
 - Les pertes hydriques sont maximales au cours des 24 premières heures, surtout les 8 premières heures.

Baxter, 1968

Retard au remplissage associé à une augmentation de la morbi-mortalité

délai perfusion	insuffisance rénale	sepsis	mortalité	Etude rétrospective 133 enfants SCB > 50%
0-2 h	14%	12%	14%	
2-4 h	54%	50%	61%	T P< 0.001
4-12 h	59%	77%	91%	Barrow et al. Resuscitation 2000; 45: 91-96


- Excès de remplissage à J3 est associé :
 - Durée de séjour augmentée
 - Durée de ventilation mécanique augmentée.

Nagpal et al. Burn 2018

Règles de calcul des apports hydriques :

Table 2 Pediatri	Table 2 Pediatric formulas for burn fluid resuscitation						
Formula	Crystalloid	Colloid	Glucose	Instructions for administration			
Eagle	30 ml/%TBSA burn + 10% weight (kg) + 4000 ml/m ² BSA of 0.66 normal saline	20 g of albumin per liter	5% dextrose	Administered over 48 h			
Cincinnati (younger children)	4 ml/kg/%TBSA burn + 1500 ml/m ² total BSA of LR	12.5 g of 25% albumin per liter of crystalloid in the last 8 h of first 24 h		Half over the first 8 h, half over the next 16 h Composition of fluid changes every 8 h First 8 h 50 meq/l of sodium bicarbonate was added. Second 8 h was LR alone. Third 8 h adds albumin			
Cincinnati (older children)	4 ml/kg/%TBSA burn + 1500 ml/m ² total BSA of LR	None	5% dextrose as needed	Half over the first 8 h, half over the next 16 h			
Galveston	5000 ml/m ² BSA burn + 2000 ml/ m ² total BSA of LR	12.5 g of 25% albumin per liter of crystalloid	5% dextrose as needed	Half over the first 8 h, half over the next 16 h			
%TBSA percent total body surface area, BSA body surface area, LR lactated Ringer's							

FORMULE DE PARKLAND MODIFIEE (pour la pédiatrie) :

	H0 –	→ H8	H8 → H24	H24 → H48	> H48
	REMPLISSAGE ++				LIMITATION
APPORTS DE BASE Holliday and Segar	Règle '4-2-1'		Règle '4-2-1'	Règle '4-2-1'	Règle '4-2-1'
COMPENSATION des PERTES liées aux BRULURES	1,5 mL/kg/%SCB		1,5 mL/kg/%SCB	1,5 mL/kg/%SCB	~ 1 mL/kg/%SCB
COMPOSITION	<pre>< 1 an :</pre>		Adaptation sur Volémie / Natrémie / statut Glucidique		
			Albumine pour maintenir Albuminémie > 30 g/L		

	H0 → H8		H8 → H24	H24 → H48	> H48
APPORTS DE BASE Holliday and Segar	Règle '4-2-1'		Règle '4-2-1'	Règle '4-2-1'	Règle '4-2-1'
COMPENSATION des PERTES liées aux BRULURES	1,5 mL/kg/%SCB		1,5 mL/kg/%SCB	1,5 mL/kg/%SCB	~ 1 mL/kg/%SCB
COMPOSITION 1 an : 50% RL 50% G5% 1/3 G5% > 1 an : 2/3 RL 1/3 G5%		Adaptation sur Volémie / Natrémie / statut Glucidique			
		1/3 G5%	Albumine pour maintenir Albuminémie > 30 g/L		

10 Kg, SCB: 15 %	H0 → H8	H8 → H24	H24 → H48	> H48
APPORTS DE BASE	40 mL/h	40 mL/h	40 mL/h	40 mL/h
COMPENSATION des PERTES	28 mL/h	14 mL/h	9 mL/h	6 mL/h
TOTAL	68 mL/h	54 mL/h	49 mL/h	46 mL/h
COMPOSITION	RL : 34 mL/h			
	G5% : 34 mL/h	Albumine 1g/kg sur 10-20 h		

APPORT D'ALBUMINE

Peu d'étude clinique, mais classiquement utilisé. Maintien Albuminémie > 30 g/L

Evaluation of the "Early" Use of Albumin in Children with Extensive Burns: A Randomized Controlled Trial*

Maria Helena Müller Dittrich, MD¹; Werther Brunow de Carvalho, MD, PhD²; Edson Lopes Lavado, PT, PhD³

- SCB > 15%
- 0.5 mg/kg/j pendant 3 jours.
- PRECOCE : entre H8 et H12
- TARDIVE : > H24

	Groups						
Variables	Intervention (n = 23)	Control (<i>n</i> = 23)	p				
Volume ^a (mL/kg/% total body surface area), median (IQR)							
Day 1	2.49 (1.68–2.44)	3.05 (2.02-3.78)	0.025				
Day 2	1.2 (1.08–1.47)	1.71 (1.28–2.37)	0.002				
Day 3	0.82 (0.59-1.12)	1.3 (0.9–1.7)	0.002				
Urine output (mL/kg/hr), median (IQR)							
Day 1	2.1 (1.74-2.2)	2 (1.1–2.18)	0.152				
Day 2	2.58 (1.92–3.4)	2.54 (2.12-4.22)	0.482				
Day 3	2.9 (1.91-3.4)	3 (2.19–5.15)	0.093				
Fluid creep, n (%)	1 (4.3)	13 (56.5)	0.001				
Length of stay (d), median (IQR)	14 (10–17)	18 (15–21)	0.004				

Pediatric critical care; 2016

MONITORAGE HEMODYNAMIQUE: limité chez l'enfant!

Pression Artérielle, Fréquence cardiaque : non spécifique (douleur, hormone stress, SIRS, Fièvre)

TEMPS DE RECOLORATION CUTANE

Diurèse:

- à maintenir entre 0.5 et 1 mL/Kg/h (voire 2 ml/kg/h chez nourrisson).
- densité urinaire : 1010 -1020 (mais pouvoir dilution des urines limités chez le nouveau-né...)

Echographie Cardiaque ++

Patient intubé : ETT, Doppler Œsophagien, PICCO,

Apports à moduler en fonction de la natrémie, glycémie, osmolarité...

Albuminémie : à maintenir > 30 g/L.

PRISE EN CHARGE INITIALE

- Apports Hydroélectrolytiques
- 2 Gestion des VAS
- 3 Analgésie
- 4 Antisepsie Locale

VOIES ARIENNES VENTILATION OXYGENATION

SECURISER LES VOIES AERIENNES.... GARANTIR UNE VENTILATION SANS EXCES +++

- FAUT IL INTUBER SYSTEMATIQUEMENT UN PATIENT BRULES DU VISAGE ?

J1

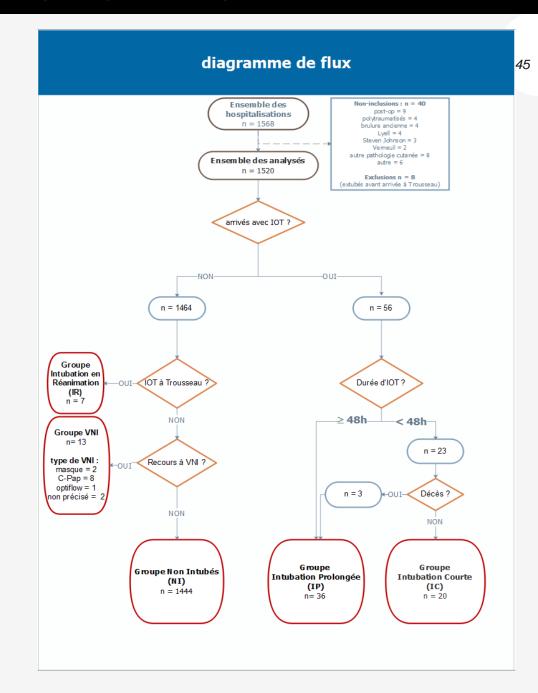
J3

SECURISER LES VOIES AERIENNES.... GARANTIR UNE VENTILATION

- FAUT IL INTUBER SYSTEMATIQUEMENT UN PATIENT BRULES DU VISAGE ?

Oedeme des VAS
Perte de capacité d'intubation

Risques de l'intubation :


- Difficulté / échec Intubation
- Traumatisme laryngé
- Oedeme laryngé

- CHEZ L'ADULTE : RISQUE D'INTUBATION EXCESSIVE ++ :
 - 40 % d'intubation inappropriée en pré-hospitalier
 - 30 % des cas : extubation dans les 24 heures.
 - Majoration de la morbidité liée à l'intubation et à la sédation

VOIES ARIENNES VENTILATION OXYGENATION

Etude Rétrospective entre 2010 -2018
Monocentrique
1520 patients inclus
Patients admis en réanimation Pédiatrique Brulés

- 3,5 % de patients intubés à l'arrivée.
 - 35 % extubés dans les 48h.
- 2,8 % d'intubation avec ventilation prolongée
- 0,8 % de VNI

SECURISER LES VOIES AERIENNES.... GARANTIR UNE VENTILATION

- FAUT IL INTUBER SYSTEMATIQUEMENT UN PATIENT BRULES DU VISAGE ?

PROBABLEMENT

BRULURE DE LA TOTALITE DU VISAGE +

Brûlure profonde et circulaire du cou Et/ou symptômes d'obstruction des VAS installés ou débutants

BRULURES TRES ETENDUES (>50 - 60 % SCB)

Transport prolongé?

INHALATION DE FUMEES

+ Détresse respiratoire

SINON

- INTUBATION généralement NON NECESSAIRE
- Aérosol adrénaline
- Corticoides

Oxygene nasal

High Flow Nasal Oxygen

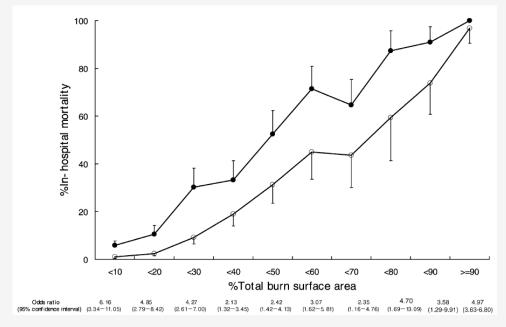
CPAP

INHALATON DE FUMEES D'INCENDIE

DIAGNOSTIC EST CLINIQUE: INCENDIE en milieu CLOS

+/- SUIE sur le visage

+/- signes laryngés


+/- expectorations noirâtres

- PRESENCE DE SUIE DANS L'ARBRE TRACHEO BRONCHIQUE
- INTOXICATION AU CO
- INTOXICATION CYANURES

Prognostic implications of inhalation injury in burn patients in Tokyo. Susuki et al, Burns, 2005, 331.

Rare mais grave Surmortalité quelque soit l'âge et quelque soit la surface brulée

Fumées incendies

GAZ

- Air chaud (vapeur d'eau)
- CO (monoxyde de carbone)
- CN (cyanures)
- Autres : Cl, ammoniac, sulfures, acroléines, éthylacétate, toluène, benzène, acrylonitrile, méthanol...

SUIES

- Température élevée (brûlures thermiques)
- Taille importante (obstruction calibre)
- Transporte des produits chimiques (brûlures chimiques)

Physiopathologie

Obstruction des voies aériennes basses

- Troubles de ventilation/perfusion : effet shunt
- Distension alvéolaire
- Altération des échanges gazeux
- Hypoxie-hypercapnie

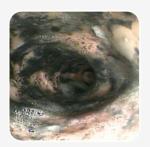
Hyperréactivité bronchique

- Fumées = gaz irritants (chlore, amoniaque...)
- Bronchospasme rapide
- Puis installation d'une hyper réactivité persistante

Brulure des muqueuses

Intoxication (CO, CN...)

Inflammation locale et générale (SIRS)


- Hyperperméabilité capillaire,
- Inflammation alveolaire,
- Fibrose

Traitement

- Fibroscopie ORL et trachéo- bronchique systématique ??
 - Gold standard pour le diagnostic
 - Attitude courante mais aucune preuve de l'efficacité.
 - Ne pas intuber juste pour faire une fibroscopie
 - A réaliser en centre spécialisé!

uniquement si détresse respiratoire ou hypoxémie

- Traitement
 - +/- IOT ventilation
 - Aérosols (N acetylcysteine, héparine, beta2...)
 - Fibroaspiration si obstruction bronchique
 - Kinésithérapie respiratoire
 - Surveillance et Traitement des complications (OAP, SDRA, atélectasies...)

Intoxication au Cyanures

Enfants plus vulnérables :

- Ventilation minute plus élevée
- Faible masse corporelle
- Immaturité métabolique

Diagnostic principalement clinique :

- Coma modéré à sévère (GCS ≤ 13), confusion, convulsions, mydriase,
- Stridor, voix rauque, polypnée, dyspnée, dépression respiratoire, etc
- Particules de suie dans les voies aériennes
- Troubles hémodynamique graves, collapsus.
- Diagnostic biologique : lactates >8 mmol/L
- Traitement : HYDROXOCOBALAMINE IV/IO 70 mg/kg (max 5 g) renouvelable 1 fois si persistance d'une hyperlactatémie.

Pediatric Cyanide Poisoning by Fire Smoke Inhalation A European Expert Consensus

Santiago Mintegi, MD, PhD,* Nuria Clerigue, MD,† Vincenzo Tipo, MD,‡ Eduardo Ponticiello, MD,‡ Davide Lonati, MD,§ Guillermo Burillo-Putze, MD,|| Nicolas Delvau, MD,¶ and Kurt Anseeuw, MD#

Ped Emerg care 2013

Intoxication au Monoxyde de Carbone

- Diagnostic clinique :
 - Troubles de la conscience,
 - Signes neurologiques, Psychologiques
 - Cardiaques, syncope,
 - Respiratoires,
- ou Biologique : Dosage de l'HbCO > 10%
- Traitement : FiO2 normobare 100% puis Oxygénothérapie hyperbare ou FiO2 normobare 100% pendant > 6 heures

- Disponibilité des caissons hyperbares
- Prise en charge du patient instable ?
- Pas de bénéfice à long terme (vs ONB) dans la population adulte.

PRISE EN CHARGE INITIALE

- Apports Hydroélectrolytiques
- Gestion des VAS
- 3 Analgésie
- 4 Antisepsie Locale

LA (les) DOULEUR(S) chez l'enfant brulé

- Polymodale : Douleur de fond et Douleur liée aux soins
- Processus inflammatoires et douleur neuropathique
- Et aussi contexte de stress majeur, anxiété, dépression....
- Tolérance, hyperalgésie et chronicisation

OBECTIFS DES PROTOCOLES DE PRISES EN CHARGE DE LA DOULEUR :

- Analgésie
- Éviter l'hyperalgésie et la tolérance aux opioïdes
- Diminuer la réponse au stress
- Prévenir la chronicisation des douleurs
- Eviter l'iléus intestinal

A LA PHASE AIGUE / Préhospitalier / Urgences

Faire simple et EVITER LA IATROGENIE

Adaptée à la douleur et au % surface brulée.... Mais pas forcément !

A LA PHASE AIGUE / Préhospitalier / Urgences

Faire simple et EVITER LA IATROGENIE

Adaptée à la douleur et au % surface brulée.... Mais pas forcément !

- Petit moyen : Refroidissement
 - Uniquement pour les brulures < 10 % SCT (risque d'hypothermie)
 - Dans les 15 premières minutes
 - Eau du robinet ou pansements hydrogel refroidissants
 - Pendant 15 min

DOULEUR

TRAITEMENTS ANTALGIQUES:

- Adaptée à la douleur et au % surface brulée.... Mais pas forcément !
- Analgésie plurimodale :

	ANALGESIE	Antihyperalgésique	Douleur neuropathique	Anxiolytique	Sédation	Effets secondaires
Morphiniques	+++		-	ı	++	Tolérance / Hyperalgésie Constipation Dépresseur respiratoire
AINS	++	+	+	1	-	Risque infectieux Insuffisance rénale
Kétamine	+	++	++	+	++	Sédation Troubles hépatiques
Gabapentinoïdes	+	++	++	1	++	sédatifs
α 2 agonistes		++	+	++	++	Hypotension
Antihistaminiques	-	-	-	+	+	
Neuroleptiques	-	-	-	++	++	Sédatifs
Antidépresseurs	-	++	++	++	++	
Non médicamenteux	+			++		

(Anesth Analg 2004;99:893-5) Thomas Edrich, MD, PhD*, Andrew D. Friedrich, MD*, Holger K. Eltzschig, MD*+, and ketamine 2.7 mg/kg/h 300-200-100days after ICU admission

Ketamine for Long-Term Sedation and Analgesia of a

Burn Patient

Figure 1. Analgesic medication administered during the hospital stay. The different opiates being administered simultaneously were converted to their morphine equivalents. ICU - intensive care unit.

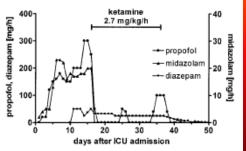
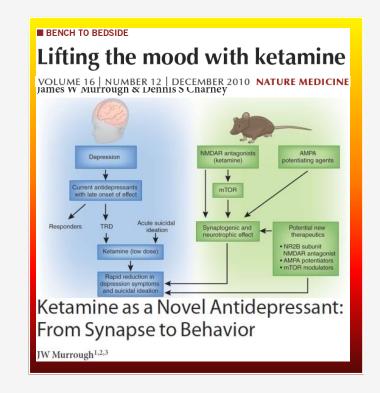



Figure 2. Sedative medications that were administered during the hospital stay. ICU = intensive care unit.

- **≻**Anesthésique(analgesique)
- > Prevention de l'hyperalgesie
- > Anti Dépresseur
- > Anti proinflammatoire
- > Prevention du PTSD ???

Pour la douleur de fond et aigue!

Table 1 Patient Demographics				
	Ketamine	No Ketamine		
Gender (female/male)	4/114	4/24		
Age	26 ± 6.0	25.1 ± 5.9		
TBSA	21.43 ± 18.34"	10.22 ± 13.18*		
ISS	16.94 ± 12.01"	8.5 ± 8.57*		
ICU days	21.14 ± 36.76*	11.67 ± 38.8*		
Number of operations	2.55 ± 2.52*	1.07 ± 0.26*		
Morphine equivalent units per operation	76.1 ± 65.7	59 ± 58.1		
Total morphine equivalent units in OR	219.7 ± 305.6*	66.8 ± 71.29*		
*p > 0.05.				

Disorder in Burned Service Members Laura L. McGhee, PhD, Christopher V. Maani, MD, Thomas H. Garza, BS, Kathryn M. Gaylord, PhD, Table 2 Prevalence of PTSD Ketamine n = 119 No Ketamine n = 28 Number of patients with 32 13 PTSD Prevalence of PTSD (%) 26.89* 46.42"

*p - 0.044.

The Correlation Between Ketamine and Posttraumatic Stress

Acta Anaesthesiol Belg. 2011;62(1):47-58. The anti-inflammatory effects of ketamine: state of the art. <u>Loix S, De Kock M, Henin P</u>

ANALGESIE

	A LA PHASE	>24 h
Douleurs faibles : SCB< 5%	Paracétamol N20/02	Paracétamol +/- AINS
Douleurs modérées : SCB 5 - 10 %	Paracétamol N20/02 Nalbuphine IV (0,2 mg/kg/6h) ou Morphine PO (0,2 mg/kg/4h)	Paracétamol Nalbuphine IV ou Morphine PO
Douleurs Intenses : SCB > 10 %	Paracétamol N20/02 Morphine: Titration IV (50 – 100 μg/kg puis 25 μg/kg/dose) Kétamine (IV: 0,2 - 0,5 mg/kg) (IR: 5 mg/kg)	Morphine PO Kétamine IVSE Gabapentine PO Clonidine IVSE
Douleurs Intenses : (Patient intubé)	Morphine IVSE Kétamine IVSE (Midazolam IVSE)	Morphine IVSE Kétamine IVSE (Midazolam IVSE) Gabapentine PO Clonidine IVSE (Remifentanil IVSE) (Droleptan IV)

PRISE EN CHARGE INITIALE

- Apports Hydroélectrolytiques
- 2 Gestion des VAS
- 3 Analgésie
- 4 Antisepsie Locale

PRISE EN CHARGE ANTI-INFECTIEUSE

Infection : la première cause de décès chez les brulés

LE CONTEXTE

Des facteurs favorisant l'apparition d'une infection :

- Perte de la barrière cutanée et colonisation bactérienne de la peau altérée
- Immunodépression
- Technique de réanimation invasive (KTC, SU, IOT, Trachéotomie)
- Hospitalisation prolongée et antibiothérapie extensive
- Prédominance du staphylocoque aureus, suivi du Pseudomonas aeruginosa ...

Un syndrome inflammatoire confondant

- Dès 10-15% de surface brulée, un syndrome inflammatoire majeur (SIRS) associant fièvre, polypnée,
 tachycardie et hyper (ou hypo) leucocytose....
- Difficile à dissocier d'un tableau septique

CONDUITE A TENIR

- Antisepsie locale rigoureuse
- Pas de traitement antibiotique sans infection prouvée

PRISE EN CHARGE ANTI INFECTIEUSE

Diminuer l'inoculum bactérien des surfaces brulées

Pleins de protocoles..... aucune étude sur le meilleur traitement

NETTOYAGE des brulures

DEBRIDMENT de l'escare : précoce (<48h) vs tardif (>10 days)

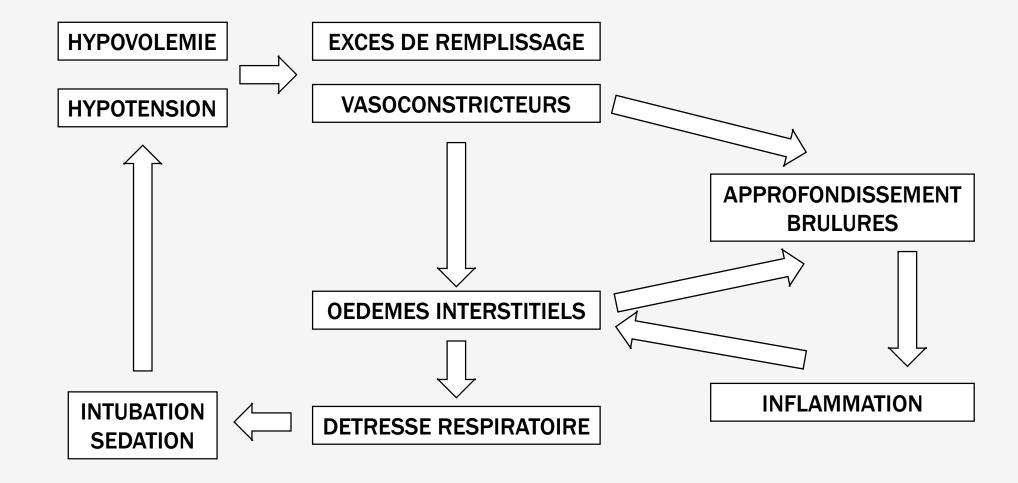
ANTISEPTIQUES LOCAUX: Povidione Iodine, Chlorhexidine, Dakin's solution, Silver sulfadiazine

PANSEMENTS: exposition à l'air, interfaces neutres, hydrocolloides, pansement Ag+,

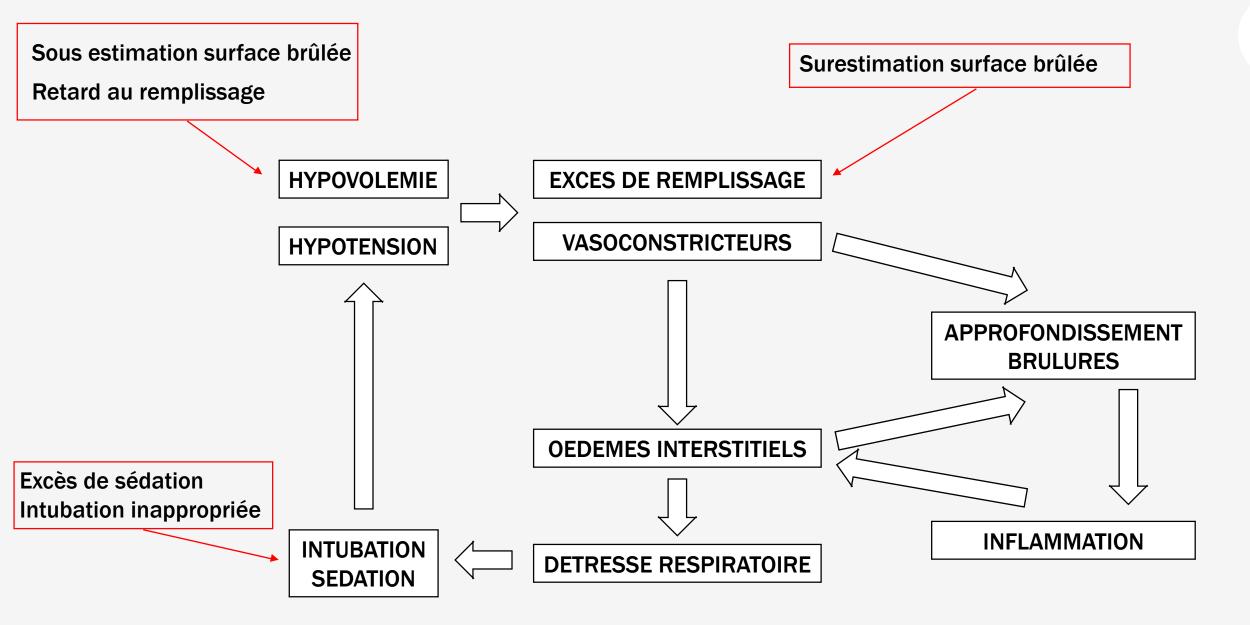
exposition air 10 jours

Chlorhexidine spray /3h

Balnéothérapie Chlorhexidine /j



Excision Escarre > 10 jours


PRISE EN CHARGE ANTI-INFECTIEUSE

A LA PHASE AIGUE : Préhospitalier / Urgences

- BRULURES PEU ETENDUES SANS CRITERE de GRAVITE :
 - Aux urgences:
 - Désinfection (Hibiscrub)
 - Pansements antiseptiques (Chlorhexidine aqueuse)
- BRULURES ETENDUES ou CRITERE de GRAVITE :
 - Prise en charge en milieu spécialisé
 - Ne pas perdre de temps avec des pansements compliqués
 - Rinçage à l'eau stérile + Pansement simple (emballer dans champs stériles)

EVITER LA IATROGENIE

CONCLUSION

PRISE en CHARGE RAISONNEE:

- Evaluation précise des brûlures
- Thérapeutiques graduées SANS EXCES :
 - Remplissage : bon volume au bon moment
 - Pas d'intubation excessive
 - Sédation adaptée au niveau de douleur
 - Soins locaux permettant d'assurer une asepsie locale

