DIU de Dermatologie Pédiatrique

Cours n° 3-2

Les maladies auto-inflammatoires

Maryam Piram

Service de Dermatologie pédiatrique, CHU Sainte Justine, Université de Montréal, Canada.

Les maladies auto-inflammatoires (MAI) sont dues à des anomalies monogéniques ou multifactorielles de l'immunité innée responsables d'épisodes récurrents d'inflammation multi-systémique sans facteur déclenchant apparent. L'immunité innée est la première ligne de défense de l'organisme contre les pathogènes, elle se caractérise par une réponse rapide, non spécifique, sans production d'auto-anticorps. Les MAI prototypes décrites dès 1999 sont les fièvres récurrentes héréditaires, maladies monogéniques en lien avec une dérégulation de la production de l'interleukine 1 (IL-1) [1]. Le concept de MAI a ensuite englobé des pathologies multifactorielles présentant un masque clinique commun aux fièvres récurrentes héréditaires (comme le syndrome PFAPA ou le syndrome de Schnitzler). Cliniquement ces MAI se manifestent par des accès inflammatoires intermittents responsables de fièvres récurrentes inexpliquées associées à des atteintes d'organes touchant principalement la peau, l'appareil musculosquelettique, les séreuses, et les yeux. Biologiquement, elles se caractérisent par une inflammation sanguine (élévation de la CRP) au cours des accès inflammatoires, pré requis indispensable avant de demander des explorations complémentaires. Grâce aux progrès de la génétique, le spectre des MAI s'est progressivement étendu à des maladies monogéniques touchant d'autres voies de l'immunité innée comme la voie des interférons ou la voie NF-κB mêlant alors autoinflammation, autoimmunité et déficit immunitaire et rendant de plus en plus complexes les tentatives de classification [2]. Le concept de MAI a dès lors évolué pour désigner les maladies dans lesquelles l'immunité innée joue le rôle principal [3].

Les retombées thérapeutiques de ces découvertes sont importantes. Les biothérapies ciblant l'interleukine 1 beta (anakinra, canakinumab et rilonacept) sont efficaces pour traiter bon nombre de MAI [4-6] et les anti-JAK (baricitinib, tofacitinib, ruxolinitib) semblent prometteurs dans les interféronopathies [5,7].

La plupart des MAI ont des manifestations dermatologiques qui commencent dans l'enfance. La reconnaissance de l'atteinte cutanée parfois très caractéristique, permet au dermatologue ou au pédiatre d'être un acteur majeur dans le diagnostic et la prise en charge de ces pathologies. Le champ des MAI étant très vaste, nous proposons de nous restreindre dans ce cours aux principales MAI responsables de fièvres récurrentes.

I. Les MAI en lien avec une dérégulation de l'interleukine 1

Un grand nombre de MAI sont dues à des mutations pathogènes impliquées aux différentes étapes de la synthèse de l'IL-1 ou de sa régulation. Les mutations retrouvées intéressent les protéines de l'inflammasome ou les protéines interagissant avec cette plateforme inflammatoire. L'inflammasome est un complexe multiprotéique à l'intérieur des leucocytes ayant un rôle essentiel dans la détection de signaux de danger intracellulaires et dans l'activation secondaire de cytokines pro-inflammatoires très puissantes comme l'interleukine-1 β (IL-1) [8,9]. L'IL1 est une cytokine pyrogénique responsable outre de la fièvre, de signes généraux tels que l'asthénie et l'abaissement du seuil de la douleur qui compromettent durablement la qualité de vie des patients. L'IL-1 provoque la sécrétion de l'interleukine 6 qui au niveau du foie induit la sécrétion de la protéine C réactive et de la protéine sérum amyloïde, précurseur de l'amylose secondaire de type AA qui peut compliquer l'ensemble des MAI mais avec une fréquence variable selon les pathologies

Les fièvres récurrentes auto-inflammatoires partagent des manifestations cliniques similaires avec une présentation, une fréquence et une intensité variables permettant de cibler les demandes d'analyses génétiques. Le tableau 1 récapitule les points permettant de distinguer les cinq principales fièvres récurrentes. La tenue d'un journal mentionnant les symptômes, leurs durées et leurs fréquences est d'une grande aide clinique (grille du score AIDAI).

1. Fièvre méditerranéenne familiale (FMF)

La FMF est la plus fréquente des MAI monogéniques. Elle est due à une mutation récessive du gène *MEFV* situé sur le bras court du chromosome 16 qui code pour une protéine (pyrine) impliquée dans l'inflammasome. Elle touche principalement les populations du Moyen–Orient et du pourtour méditerranéen (juifs sépharades, arméniens, turcs, arabes…). La maladie débute généralement dans l'enfance et se caractérise par des accès fébriles qui durent moins de 72h et qui sont accompagnés d'une inflammation des séreuses (articulaire, pleurale, péricardique, péritonéale) se traduisant par des douleurs articulaires, thoraciques et/ou abdominales. L'atteinte cutanée caractéristique est le pseudo-érysipèle retrouvé chez environ 20% des patients. Il s'agit un érythème inflammatoire plus ou moins bien limité localisé principalement sur le pied ou à la face antérieur de la jambe qui disparaît spontanément en quelques jours (fig.1). La biopsie cutanée, rarement pratiquée, montre un discret œdème du derme superficiel et un infiltrat périvasculaire à prédominance neutrophilique [10]. Est également observé une incidence plus élevée des vascularites des petits et moyens vaisseaux (purpura

rhumatoïde et péri-artérite noueuse). Entre les poussées inflammatoires, l'enfant va bien. Le traitement consiste en une prise quotidienne de colchicine afin de diminuer la fréquence des poussées inflammatoires et limiter le risque de survenue d'une amylose rénale.

Fig1 : pseudo-érysipèle dans une FMF (Collection V Hentgen, CeRéMAIA)

2. Le déficit en mévalonate kinase (MKD)

Le déficit partiel en mévalonate kinase, anciennement nommé syndrome hyperIgD est une maladie autosomique récessive rare secondaire à une mutation du gène MVK codant une enzyme la mévalonate kinase impliquée dans la biosynthèse du cholestérol. La maladie débute dans la première année de vie et associe des fièvres de 3 à 7 jours récurrentes toutes les 4 à 8 semaines accompagnées d'adénopathies douloureuses, d'arthralgies/d'arthrites et de signes digestifs (douleurs abdominales, diarrhées, vomissements, hépato-splénomégalie). L'atteinte cutanéo-muqueuse fréquente se caractérise par un rash cutané non spécifique souvent maculo-papuleux à prédominance acral accompagnant les poussées inflammatoires et des aphtes (buccaux voire génitaux) [10,11]. Le diagnostic est confirmé par un dosage de l'acidurie mévalonique élevé lors d'un épisode fébrile ou par la recherche des mutations génétiques. Le dosage des IgD est augmenté de manière inconstante. L'évolution est favorable avec amélioration des symptômes avec l'âge; le risque d'amylose secondaire est faible. Les répercussions scolaires, professionnelles et la fatigue importante associés aux crises fébriles justifient un traitement (AINS, corticothérapie orale durant la crise ou anti-IL1). [5] En cas de déficit enzymatique complet, le tableau associe une dysmorphie, des signes oculaires et une atteinte neurologique sévère et requiert une greffe de moelle.

Fig2 : éruption maculopapuleuse lors d'une poussée fébrile de MKD (Collection H Lachmann, Londres)

3. Le syndrome périodique lié au récepteur du TNF (TRAPS)

Le TRAPS est un syndrome autosomique dominant rare secondaire à une mutation dans le gène TNFRSF1A qui code pour le récepteur de type 1 du Tumor Necrosis Factor (TNF) impliquant un défaut de migration du récepteur du TNF vers la surface de la cellule responsable d'une réponse proinflammatoire intracellulaire et une survie prolongée des cellules inflammatoires activées [12]. La maladie débute principalement dans l'enfance (âge moyen 3 ans) mais peut apparaître chez l'adulte [13]. Les poussées fébriles sont prolongées, durant plusieurs jours ou semaines (en moyenne 3 semaines). Les accès s'accompagnent de manifestations cutanées dans 80% des cas [14]. Les plus caractéristiques sont des plaques érythémateuses œdémateuses sensibles, de taille variable, débutant à la racine des membres et migrant vers l'extrémité distale, concomitantes de myalgies intenses qui suivent la même trajectoire [15]. La biopsie d'une lésion montre un épiderme normal ainsi qu'un infiltrat lymphocytaire et monocytaire périvasculaire et interstitiel [10]. Plus rarement les patients présentent des lésions maculeuses ou papuleuses œdémateuses confluentes d'aspect annulaire ou serpigineux du tronc et des membres, un œdème périorbitaire légèrement érythémateux, des lésions de panniculite ou de vascularite des petits vaisseaux [16]. Les douleurs abdominales, parfois pseudochirurgicales, et les douleurs articulaires sont fréquentes (80%). Les poussées inflammatoires sont récurrentes sans périodicité. La sévérité et la fréquence des poussées peuvent diminuer avec l'âge. Une amylose complique la maladie dans environ 15% des cas. Le traitement des poussées fait appel à une corticothérapie orale. La colchicine est inefficace. Les anti-TNF sont décevants tandis que les antiIL1 plus efficaces suggèrent un lien entre les mécanismes pathogéniques du TRAPS et l'inflammasome.

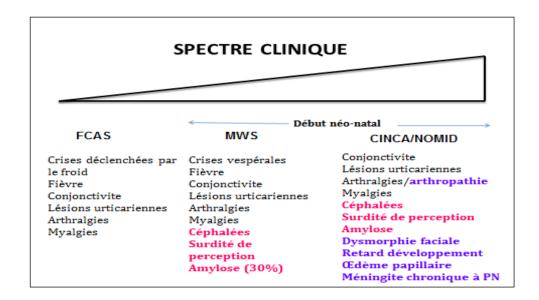


Fig3 : macules érythémateuses lors d'une poussée inflammatoire de TRAPS (Collection H Lachmann, Londres)

4. Les cryopyrinopathies (CAPS)

Les CAPS sont des pathologies autosomiques dominantes et constituent un spectre clinique couvrant 3 entités par ordre de gravité croissante: l'urticaire familiale au froid (FCAS), le syndrome de Muckle-Wells (MWS) et le syndrome CINCA (chronique, inflammatoire, neurologique, cutané et articulaire) décrites séparément mais rassemblées par la génétique car dues à des mutations dans le gène *NLRP3*, codant pour une protéine au cœur de l'inflammasome (la cryopyrine). Les symptômes associés aux CAPS sont rapportés sur la fig. 4.

Fig. 4: Spectre clinique des cryopyrinopathies

L'atteinte cutanée du FCAS se caractérise par une éruption urticarienne avec sensation de brûlure survenant une à deux heures après une exposition au froid et disparaissant en moins de 24 heures [17]. Il existe un syndrome inflammatoire biologique lors des poussées, le test au glaçon est négatif. Dans le MWS et le CINCA, les lésions urticariennes sont précoces parfois dès la maternité et évoluent de manière plus chronique (fig.5). La biopsie cutanée montre un infiltrat périvasculaire et périeccrine composé essentiellement de neutrophiles dans le derme sans oedème significatif [18]. Une hidradénite eccrine neutrophilique a été décrit dans le CINCA. Les anti-IL1 ont un effet spectaculaire sur les symptômes (fièvre, fatigue, lésions cutanées, conjonctivite, atteinte articulaire) [4] et préviennent la survenue des complications (amylose et surdité).

Fig. 5 : Lésions urticariennes chez un nouveau-né et son frère ainé atteints de syndrome de Muckle-Wells. (Collection M Piram, CeRéMAIA)

Le syndrome NALP12, dû à une mutation dans le gène *NLRP12* se présente avec un phénotype similaire aux cryopyrinopathies et sera diagnostiqué grâce à la réalisation de panels génétiques (Next Generation Sequencing). [2]

5. Le syndrome PFAPA

Le syndrome PFAPA est un acronyme pour Fièvre Périodique, Adénopathies cervicales, Pharyngite, Aphtes. Il s'agit de la fièvre périodique la plus fréquente dans nos contrées. Aucune mutation génétique n'a été retrouvée et les cas familiaux sont rares. La symptomatologie ressemble à celle du déficit en mévalonate kinase (fièvres pendant 3 à 6 jours récidivantes toutes les 4 semaines et au moins une des anomalies de l'acronyme) mais avec une symptomatologie digestive plus pauvre et une apparition plus tardive de la maladie (classiquement entre l'âge de 1 à 5 ans). Les aphtes buccaux présents chez 40 à 70 % des patients ont les mêmes caractéristiques que les aphtes buccaux idiopathiques. Un rash non spécifique est rarement rapporté [10]. L'évolution est spontanément favorable avant la fin de la première décennie. Une corticothérapie orale (1mg/kg d'équivalent prednisone) en une prise le premièr

jour de fièvre stoppe la poussée fébrile au risque de rapprocher les crises chez un quart des patients. L'amygdalectomie est une alternative thérapeutique de seconde ligne débattue.

Tableau 1 : Récapitulatif des éléments permettant de différencier les principales fièvres récurrentes autoinflammatoires.

	FMF	MKD	TRAPS	CAPS	PFAPA
Ethnies	Sépharades, arméniens, Méditerranée	caucasiens	non	non	non
Âge début	enfance	Première année de vie	variable	néonatal pour MWS et CINCA	enfance
Fièvre	< 3j	3à 7j	>7j	inconstante	3 à 6j
Symptômes	Sérites Pseudo- érysipèle	Aphtes Adénopathies Signes digestifs	Plaques érythémateuses migrantes vers extrémités Lésions annulaires Œdème périorbitaire myalgies Douleurs abdominales	Lésions urticariennes Conjonctivite surdité	Aphtes Adénopathie Pharyngite
Gène	MEFV	MVK	TNFRSF1A	NLRP3	Non connu

Beaucoup plus rarement, les fièvres récurrentes (<7 jours) associés aux aphtes buccaux peuvent être dues à une mutation dans le gène *WRD1* causant le syndrome fièvre périodique, immunodéficience et Thrombocytopénie (**PFIT**). [2]

6. Syndrome DIRA (Deficiency of the Interleukin-1-Receptor Antagonist)

Décrite en 2009, la mutation homozygote du récepteur antagoniste de l'IL-1 résulte en une protéine tronquée non sécrétée n'ayant plus le pouvoir d'inhiber les puissantes cytokines proinflammatoires IL-1α et β. La maladie se caractérise par une pustulose néonatale, une ostéomyélite et une périostite. L'atteinte cutanée, très précoce (0-2 mois) a un aspect clinique et anatomopathologique de psoriasis pustuleux résistant aux dermocorticoïdes [19]. L'atteinte osseuse se manifeste par des gonflements articulaires et des douleurs à la mobilisation. Les patients sont apyrétiques ou peu fébriles mais ont une élévation nette des marqueurs biologiques de l'inflammation. Le traitement par anti-IL1 (Anakinra) a une efficacité spectaculaire améliorant aussi bien l'atteinte cutanée qu'osseuse [19]. Le syndrome DITRA (fig.6), maladie autosomique récessive, se présente également comme un psoriasis pustuleux néonatal ou familial

fébrile [20]. Il est une due à une mutation du gène IL36RN codant pour la récepteur antagoniste de l'IL36 et responsable d'une production élevée de cytokines pro-inflammatoires comme l'IL8 ou les IL36, membres de la famille de l'IL1, surexprimées dans la peau des sujets atteints.

7. Syndrome de MAJEED

Le syndrome Majeed est une pathologie rare autosomique récessive due à la mutation du gène *LPIN2*, localisé sur le chromosome 18, dont la fonction est mal connue [21]. La maladie est caractérisée par une triade : ostémomyélite récurrente multifocale à début néonatal, anémie congénitale dysérythropoiétique, dermatose neutrophilique en particulier syndrome de Sweet. Une éruption pustuleuse psoriasiforme et une fièvre récurrente complètent souvent le tableau. L'efficacité des traitements anti-IL1 suggère que la pathogénèse de la maladie est médiée par l'interleukine 1.

8. Syndrome PAPA

Le syndrome PAPA décrit en 1997 [22] est un acronyme pour Pyoderma gangrenosum, Arthrite Pyogénique et Acné. Il s'agit d'une MAI autosomique dominante due à des mutations du gène *PSTPIP1*, situé sur le chromosome 15, responsables d'une hyperphosphorylation de la protéine PSTPIP1 altérant son interaction avec la pyrine au sein de l'inflammasome et participant à l'hypersécrétion d'IL-1 β. La maladie se déclare dans l'enfance par des poussées récurrentes d'arthrites douloureuses; l'atteinte cutanée est plus tardive. En l'absence de traitement, la maladie se complique

de cicatrices cutanées inesthétiques et de destruction articulaire progressive. Les anti-IL-1 et les anti-TNF, efficaces sur l'inflammation articulaire et les ulcérations cutanées sont inefficaces sur l'acné sévère associée. Les syndromes PASH (Pyoderma gangrenosum, Acné, Hidradénite suppurée) et PAPASH (Arthrite Pyogénique, Pyoderma gangrenosum, Acné, Hidradénite suppurée) décrits en 2012 et 2013 et PAC (Pyoderma gangrenosum, acné, colite) se rapprochent cliniquement du syndrome PAPA [23,24].

II. <u>Les interféronopathies</u>

Le terme d'interféronopathies, proposé en 2011, englobe des MAI héréditaires liées à une anomalie des voies de régulation des IFN de type I [25]. Les interférons sont d'importantes cytokines aux propriétés antivirales, immuno-modulatrices et anti-tumorales. Les voies de signalisation intracellulaires menant à la sécrétion d'IFN de type I sont activées après reconnaissance de motifs microbiens. Puis s'opère un mécanisme d'auto-amplification, l'IFN produit va se lier sur un récepteur cellulaire de l'IFN (IFNAR) et stimuler des centaines de gènes stimulateurs d'interféron via la voie JAK-STAT. Cette rapide induction et auto-amplification de l'IFN est très efficace dans le processus d'éradication virale. Par ailleurs des anomalies de fonction du protéasome et de l'immunoprotéasome, complexes multiprotéiques cytosoliques ayant pour rôle de dégrader les protéines anormales ou surnuméraires, sont responsables d'une accumulation de protéines endommagées favorisant un stress cellulaire et la production d'IFN type 1.

Les anomalies génétiques intéressant les protéines impliquées dans les voies de sécrétion ou de régulation de l'IFN sont responsables de MAI pour lesquelles les thérapies ciblées sur la voie de signalisation JAK-STAT semblent prometteurs.

Contrairement aux pathologies médiées par l'IL-1, le syndrome inflammatoire est inconstant et une autoimmunité peut être associée [26]. L'atteinte dermatologique évocatrice des interféronopathies consiste en des engelures à début précoce ou familiales ou une lipodystrophie avec panniculite dans les pathologies liées à une anomalie du protéasome. Les interféronopathies regroupent le syndrome d'Aicardi-Goutières, le lupus engelure familial, le lupus monogénique, le syndrome SAVI, le syndrome CANDLE et d'autres pathologies encore plus rares.

1. Le syndrome SAVI

Le SAVI pour STING-associated vasculopathy with onset in the infancy est une affection autosomique dominante décrite en 2014, liée à une mutation gain de fonction dans le gène TMEM173 qui code pour la protéine STING impliqué dans la voie de synthèse de l'IFN type 1 [27]. Les premières manifestations cliniques débutent dès la période néonatale et associent des lésions cutanées de vascularite et une atteinte pulmonaire interstitielle. L'aspect dermatologique est celle d'engelures, parfois entourées de télangiectasies, localisées sur les doigts, les orteils, la pointe du nez, les joues, les hélix et les lobules des oreilles. Des lésions pustuleuses et un livédo des membres peuvent être associés. Les engelures évoluent par poussées, rythmées par le froid, et se compliquent d'ulcérations ou de gangrènes digitales puis laissent place à des cicatrices atrophiques et dépigmentées. L'atteinte pulmonaire interstitielle se manifeste par l'apparition d'une tachypnée dans les premières semaines de vie. Certains patients présentent une fièvre récurrente de faible intensité, une amyotrophie musculaire ou une polyarthrite. Le diagnostic repose sur un faisceau d'argument clinique et la mise en évidence d'une « signature interféron » sérique ou par la recherche de mutations du gène TMEM173. Des stigmates d'autoimmunité avec des taux faibles, inconstants et fluctuants, de facteurs anti-nucléaires, d'anticorps anti-cytoplasme des polynucléaires neutrophiles et d'anticorps anti-phospholipides peuvent être présents.

2. Le syndromes CANDLE

L'acronyme CANDLE proposé en 2010 par Torrelo et al [28] décrit une Dermatose Neutrophilique Atypique Chronique avec Lipodystrophie et température Elevée. La maladie se caractérise par l'apparition dans les premiers mois de vie d'une fièvre prolongée et de plaques érythémato-violacées annulaires, diffuses, évoluant par poussées, et disparaissant en quelques semaines avec une évolution ecchymotique (fig. 7). Sont également associés, des lésions acrales de type engelure, un érythème et un œdème périorbitaires, un épaississement des lèvres et une lipodystrophie de prédominance faciale et d'installation progressive ainsi qu'un retard de croissance staturo-pondérale, une hépatosplénomégalie, une atteinte articulaire et ophtalmologique. Ce syndrome est secondaire à des mutations dans les gènes codants les sous-unités du protéasome-immunoproteasome (*PSMB*, *PSMA*...) ou de la protéine régulatrice (*POMP*).

Fig 7 : plaques annulaires érythémato-violacées chez une jeune fille atteinte du syndrome CANDLE (Collection A Torrelo, Madrid)

III. Les anomalies de régulation de NF-κB.

D'autres MAI impliquant des anomalies des voies de signalisation, notamment en lien avec la voie NF-κB ont été décrites. Le syndrome de Blau ou sarcoïdose à début précoce est dû à des mutations autosomiques dominantes en gain de fonction dans le gène NOD2/CARD15 [29] situé sur le chromosome 16 et impliqué dans la pathogénèse de la maladie de Crohn. La maladie se caractérise par une inflammation granulomateuse touchant les yeux (uvéite chronique), les articulations (polyarthrite), la peau et débute avant l'âge de 4 ans. Une fièvre peut être associée et d'autres organes peuvent être atteints. L'atteinte cutanée, souvent la première manifestation de la maladie se caractérise par une éruption érythémateuse maculeuse ou micropapuleuse finement squameuse d'allure ichtyosiforme [30]. La biopsie cutanée montre un infiltrat inflammatoire dermique granulomateux sans nécrose caséeuse. Le traitement optimal n'est pas codifié, les atteintes parfois très sévères sont traitées par bolus de corticoïdes, immunosuppresseurs, biothérapies (TNF ou anti IL1) ou chirurgie.

Le syndrome HA20 (mutations de *TNFAIP3*, codant pour la protéine régulatrice de NF-κB) est à évoquer devant un tableau ressemblant à une maladie de Behçet familiale ou à début précoce.

D'autres MAI impliquant la voie NF-κB associées à un déficit immunitaire ont été décrites. Deux d'entre-elles sont dues à des mutations dominantes du gène *PLCG2* : 1) le syndrome PLAID (PLCγ2-associated antibody deficiency and immune dysregulation) donne une urticaire au froid, une auto-immunité et une susceptibilité aux infections ; 2) le syndrome APLAID (Autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation) associe plaques érythémateuses et lésions vésiculo-pustuleuses récurrentes, arthralgies, érosions de la cornée, pneumopathie interstitielle et se complique d'infections sinopulmonaires récidivantes. Une troisième pathologie, autosomique récessive, concerne des mutations dans le gène *HOIL* et est responsable d'une fièvre récurrente à début

précoce avec hépatosplénomégalie, diarrhée chronique, eczéma érythrodermique, cardiomyopathie et infections à répétition.

Tableau 2 :

Tableau récapitulatif mais non exhaustif des principales MAI selon l'atteinte dermatologique

Atteinte cutanée	Principales maladies auto-inflammatoires		
Lésions urticariennes	 CAPS: Urticaire au froid, Syndrome de Muckle-Wells, Syndrome CINCA NALP12 Syndrome PLAID TRAPS MKD 		
Dermatose neutrophilique	 Syndrome Majeed (Sweet) PAPA, PASH, PAPASH, PAC, PAAND (pyoderma gangrenosum) 		
Panniculite	CANDLE et autres anomalies du protéasome		
Pseudo-érysipèle	• FMF		
Maculo-papules migrantes de la racine des membres aux extrémités	• TRAPS		
Micropapules granulomateuses	Syndrome de Blau		
Maculo-papules non spécifiques	MKDPFAPA (rare)		
Vascularite	Interféronopathies		
	FMF (vascularites plus fréquentes)		
Aphtes	• MKD		
	• PFAPA		
	• HA20		
	• PFIT		
Psoriasis pustuleux	• DIRA		
	• DITRA		
	Syndrome Majeed		

REFERENCES:

- 1. McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999; 97(1):133-44.
- 2. Marino A, Tirelli F, Giani T, Cimaz R. Periodic fever syndromes and the autoinflammatory diseases (AIDs). J Transl Autoimmun. 2019 Dec 17;3:100031. [epub]
- 3. Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol.2017;18:832-42.
- 4. Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB et al; Canakinumab in CAPS Study Group. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009;360:2416-25.
- 5. Soriano A, Soriano M, Espinosa G, et al. Current Therapeutic Options for the Main Monogenic Autoinflammatory Diseases and PFAPA Syndrome: Evidence-Based Approach and Proposal of a Practical Guide. Front Immunol. 2020;11:865.
- 6. De Benedetti F, Gattorno M, Anton J, et al. N Engl J Med. 2018;378(20):1908-1919.
- 7. Frémond ML, Rodero MP, Jeremiah N et al. Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173-activating mutations in 3 children. J Allergy Clin Immunol. 2016;138(6):1752-1755.
- 8. Agostini L, Martinon F, Burns K, et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004; 20, 319–325
- 9. Dinarello CA: Immunological and Inflammatory Function of the Interleukin-1 Family Annu. Rev. Immunol. 2009;27:519–50
- 10. Dávila-Seijo P, Hernández-Martín A, Torrelo A. Autoinflammatory syndromes for the dermatologist. Clin Dermatol. 2014;32:488–501.
- 11. Drenth JP, Boom BW, Toonstra J, Van der Meer JW. Cutaneous manifestations and histologic findings in the hyperimmunoglobulinemia D syndrome. International Hyper IgD Study Group. Arch Dermatol. 1994;130:59–65.
- 12. Pettersson T, Kantonen J, Matikainen S, Repo H. Setting up TRAPS. Ann Med;44:109-18.
- 13. Lachmann HJ. Clinical immunology review series: An approach to the patient with a periodic fever syndrome. Clin Exp Immunol.;165:301-9.
- 14. Farasat S, Aksentijevich I, Toro JR. Autoinflammatory diseases: clinical and genetic advances. Arch Dermatol. 2008 Mar;144(3):392–402.
- 15. Toro JR, Aksentijevich I, Hull K, Dean J, Kastner DL. Tumor necrosis factor receptor-associated periodic syndrome: a novel syndrome with cutaneous manifestations. Arch Dermatol. 2000 Dec;136(12):1487–94.
- 16. Lamprecht P, Moosig F, Adam-Klages S, et al. Small vessel vasculitis and relapsing panniculitis in tumour necrosis factor receptor associated periodic syndrome (TRAPS). Ann Rheum Dis. 2004 Nov;63(11):1518–20.
- 17. Hoffman HM, Wanderer AA, Broide DH. Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol. 2001;108:615–20.
- 18. Kolivras A, Theunis A, Ferster A, et al. Cryopyrin-associated periodic syndrome: an autoinflammatory disease manifested as neutrophilic urticarial dermatosis with additional perieccrine involvement. J Cutan Pathol. 2011;38:202-8.
- 19. Minkis K, Aksentijevich I, Goldbach-Mansky R, et al. Interleukin 1 receptor antagonist deficiency presenting as infantile pustulosis mimicking infantile pustular psoriasis. Arch Dermatol.2012;148(6):747-52.
- 20. Marrakchi S, Guigue P, Renshaw BR et al.Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. NEJM 2011, 365:620-8.

- 21. Ferguson PJ, Chen S, Tayeh MK, et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet. 2005;42(7):551-7.
- 22. Lindor NM, Arsenault TM, Solomon H et al. A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum, and acne: PAPA syndrome. Mayo Clin Proc. 1997;72(7):611-5.
- 23. Marzano AV, Trevisan V, Gattorno M et al. Pyogenic arthritis, pyoderma gangrenosum, acne, and hidradenitis suppurativa (PAPASH): a new autoinflammatory syndrome associated with a novel mutation of the PSTPIP1 gene. JAMA Dermatol. 2013;149:762-4.
- 24. Braun-Falco M, Kovnerystyy O, Lohse P, Ruzicka T. Pyoderma gangrenosum, acne, and suppurative hidradenitis (PASH)--a new autoinflammatory syndrome distinct from PAPA syndrome. J Am Acad Dermatol. 2012;66:409-15.
- 25. Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci. 2011;1238:91-8.
- 26. Canna SW, Goldbach-Mansky R. New monogenic autoinflammatory diseases—a clinical overview. Semin Immunopathol. 2015; 37:387-94.
- 27. Liu Y, Jesus AA, Marrero B, Yang D, et al. Activated STING in a vascular and pulmonary syndrome. NEJM, 2014;371:507–18.
- 28. Torrelo A, Patel S, Colmenero I, et al. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome. J Am Acad Dermatol 2010.;62(3):489-95.
- 29. Miceli-Richard C, Lesage S, Rybojad M, et al. CARD15 mutations in Blau syndrome. Nat Genet. 2001;29(1):19-20.
- 30. Wouters CH, Maes A, Foley KP et al. Blau syndrome, the prototypic auto-inflammatory granulomatous disease. Pediatric Rheumatology 2014, 12:33